
5/21/2025

A Progression of Language Model Usage in SW development

Agentic AI and Software
Development

Overview of LMs

Agentic LMs

Agentic LMs in SW development

Summary

Outline

Language Model

• Language model:

• Predicts the next words based on previous words

• How it is trained:

• Trained to compress world knowledge (text, code)

• Trained to follow instructions

• ChatGPT like systems:

• Provide answers within natural conversation

Current Status and Applications

LM Usage

• LMs are rapidly evolving, with new models
and products being introduced regularly

• Numerous applications leverage LMs:

• AI coding assistants

• Domain-specific AI copilots

• ChatGPT and other conversational
interfaces

Working with Prompts

LM Usage

• Natural language interaction through well-crafted prompts

• Key strategies:

• Write clear, descriptive instructions

• Include few-shot examples

• Provide relevant context (static or dynamic)

• Enable Chain of Thought (CoT) reasoning. Give model time to think

• Break down complex tasks. Chain complex prompts

• Systematic trace and evaluation of prompts for performance improvement

A good prompting guideline : https://platform.openai.com/docs/guides/prompt-engineering

Common Limitations of LMs

• Hallucination: Generation of incorrect information with high
confidence

• Knowledge cutoff: Limited to training data timeframe

• Lack of attribution: No direct source citations

• Data privacy: Limited to public training data, no access to proprietary
information

• Limited context length: Constraints due to attention mechanism
architecture

RAG (Retrieval Augmented Generation)

How it works:

1. Text preprocessing:

• Chunking large texts appropriately

• Converting documents to embeddings

2. Storage:

• Maintaining embedding-text pairs

3. Query processing:

• Converting queries to embeddings

• Performing similarity search (Retrieval)

• Generating enhanced prompts with context (Augmentation)

• Submitting to LM for final output (Generation)

To augment LMs with knowledge from
external sources, Retrieval Augmented
Generation (RAG) is commonly used.

RAG addresses the following challenges

• Hallucination

• Lack of attribution

• Data privacy

• Limited context length

Tool usage

• Example: “What is the best cafe based on user reviews?”

• LLM will generate `{tool: web-search, query: "cafe reviews"}`

• External tool searches and provides result to LM

• Example: “What is the weather in San Francisco?”

• LLM will generate `{tool: get-weather, query: "SF"}`

• External tool is called and provides result to LM

• Example: “If I invest $100 at 7% compound interest for 12 years, what do I
have at the end?”

• LLM generates Python code with this: `{tool: python-interpreter,
code: "100 * (1+0.07)**12"}`

• Generates code, runs it, and produces the outputRef: https://www.deeplearning.ai/the-batch/how-agents-can-
improve-llm-performance/

LMs can generate function signatures to interact
with external tools, enabling capabilities such as
making API calls or executing code.

Tool usage address the following challenges

• Real-time information

• Computations

Interact with environments

Agentic LMs

• Simple LM: use cases involve text in and text out

Text input LM Text output

• Agentic LM: Interact with environments iteratively

LM Environment

Action

Observation

Memory

Reasoning

& Planning

Ref: https://rdi.berkeley.edu/llm-agents-mooc/slides/intro.pdf

Overview

Agentic LMs

A progression of LM usage

• Ability to Reason and Act:

• Reason about tasks: break down
complex tasks and plan actions

• Execute actions: use external tools,
code, and retrieve information

• Interact with environment: using tools

• Learn from feedback

Ref: https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/

Example task:

Customer support case: "Can I get a refund
for product Foo?"

• Check the refund policy

• Check the customer order information

• Check the product information

• Generate a refund plan and response

Agentic LMs

• Agent workflow: LMs iterate over documents or tasks, using external tools or code to:

• Research topics using web data, summarize findings, and present output

• Prepare plans for software fixes and iteratively propose code solutions

• Utilize LMs with different roles (such as generator and critics) iteratively

• Generate plans for using external tools

• Agentic LM usage can achieve more complex tasks than non-iterative and LM-only patterns

Ref: https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/

Real-world Applications

Agentic LMs

• Software Development

• Code generation and review

• Bug detection and fixing

• Research and Analysis

• Data gathering and synthesis

• Report generation

• Task Automation

• Workflow optimization

• Process automation

Ref: https://cs230.stanford.edu/syllabus/fall_2024/rag_agents.pdf

AI SW developer

AI lawyer

AI SDR

When to use Agent

• Is the task complex?

• Is the task valuable?

• Is it viable?

• What is the cost of error?

How We Build Effective Agents: Barry Zhang, Anthropic

https://www.youtube.com/watch?v=D7_ipDqhtwk&t=7s

SW Development

• Is the task complex? Yes

• Is the task valuable? Yes

• Is it viable? Yes

• What is the cost of error? With tests, we can detect issues during development

How We Build Effective Agents: Barry Zhang, Anthropic

https://www.youtube.com/watch?v=D7_ipDqhtwk&t=7s

AI Progression in SW development

• Auto completion: suggests the code in editor environment

• Chat style AI:

• AI will answer questions and update the code based on
conversations

• Agentic AI:

• Changes requires understanding multiple files and result of
the execution or search

AI software engineer

• AI SWE understand the code base

• Code indexing and understanding

• Use tool to read code (add relevant code into context)

• AI can plan and use tools

• Run posix commands

• Run code and parse the outputs

• Run git commands

• Run the test and check the results

AI in SWE

• Rapid development

• Started with simple ideas but will be applied to more areas in
development

• Coding

• Fixing issues

• Finding issues

• Writing tests

• Refactor code

What’s in it for us?

• Use AI tools to improve productivity

• Try out simple tasks first, then extend

• Refactoring or fixing issues is a good start

• Write tests

• Use it as a AI buddy for debugging

• Log or error analysis

Summary

• Agentic LMs represent the next evolution in AI assistance

• Key advantages:

• Autonomous reasoning and action

• Tool integration capabilities

• Iterative improvement through feedback

• Complex task decomposition

• Growing applications across software development, research, and automation

• AI systems are pushing the boundary of how software is designed, built, tested, and maintained.

References

The following are references for the presentation. We learned from these sources and reused content and images from them:

1. [Agentic Design Patterns Part 1](https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/)

2. [Large Language Model Agents, MOOC Fall 2024](https://llmagents-learning.org/f24)

3. [Natural Language Processing with Deep Learning, 2024](https://web.stanford.edu/class/cs224n)

4. [Building Effective Agents](https://www.anthropic.com/research/building-effective-agents)

5. [RAG and AI Agents from Deep Learning](https://cs230.stanford.edu/syllabus/fall_2024/rag_agents.pdf)

6. [Tool Use and LLM Agent Basics from Advanced NLP](https://www.phontron.com/class/anlp-fall2024/assets/slides/anlp-15-tooluse-
agentbasics.pdf)

7. [What are AI Agents?](https://www.youtube.com/watch?v=F8NKVhkZZWI)

8.[Frontiers-of-AI-Agents-Tutorial](https://frontiers-of-ai-agents-tutorial.github.io/)

https://frontiers-of-ai-agents-tutorial.github.io/

Backup materials

Agentic LM design patterns

Here are some key agent design patterns:

• Planning: Multi-step planning to achieve goals

• Reflection: Examines its own work and improves

• Tool usage: Utilizes web search, code executions

• Multi-agent collaboration: Splits work and facilitates
discussion

Ref: https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/

How LMs are trained:

1. Pre-training: LM is trained with large corpus by next token prediction objective

2. Post-training:

1. Instruction following training adapts pre-trained LM to follow specific instruction and
commands. It is also called as SFT (supervised fine-tuning).

• It makes the models easier to use.

• It makes the model to respond in a specific style

2. RLHF (reinforcement learning with human feedback): method that fine-tunes the model
using human preference to align generated behaviors with human values and intentions

https://openai.com/index/instruction-following/
https://arxiv.org/abs/2203.02155

