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Language Model

• Language model:  

• Predicts the next words based on previous words 

• How it is trained: 

• Trained to compress world knowledge (text, code) 

• Trained to follow instructions 

• ChatGPT like systems: 

• Provide answers within natural conversation 



Current Status and Applications

LM Usage

• LMs are rapidly evolving, with new models 
and products being introduced regularly 

• Numerous applications leverage LMs: 

•   AI coding assistants 

•   Domain-specific AI copilots 

•   ChatGPT and other conversational 
interfaces



Working with Prompts

LM Usage

• Natural language interaction through well-crafted prompts 

• Key strategies: 

• Write clear, descriptive instructions 

• Include few-shot examples 

• Provide relevant context (static or dynamic) 

• Enable Chain of Thought (CoT) reasoning. Give model time to think 

• Break down complex tasks. Chain complex prompts 

• Systematic trace and evaluation of prompts for performance improvement

A good prompting guideline : https://platform.openai.com/docs/guides/prompt-engineering



Common Limitations of LMs

• Hallucination: Generation of incorrect information with high 
confidence 

• Knowledge cutoff: Limited to training data timeframe 

• Lack of attribution: No direct source citations 

• Data privacy: Limited to public training data, no access to proprietary 
information 

• Limited context length: Constraints due to attention mechanism 
architecture



RAG (Retrieval Augmented Generation)

How it works: 

1. Text preprocessing: 

• Chunking large texts appropriately 

• Converting documents to embeddings 

2. Storage: 

• Maintaining embedding-text pairs 

3. Query processing: 

• Converting queries to embeddings 

• Performing similarity search (Retrieval) 

• Generating enhanced prompts with context (Augmentation) 

• Submitting to LM for final output (Generation)

To augment LMs with knowledge from 
external sources, Retrieval Augmented 
Generation (RAG) is commonly used. 

RAG addresses the following challenges 

• Hallucination 

• Lack of attribution 

• Data privacy 

• Limited context length



Tool usage

• Example: “What is the best cafe based on user reviews?” 

• LLM will generate `{tool: web-search, query: "cafe reviews"}` 

• External tool searches and provides result to LM 

• Example: “What is the weather in San Francisco?” 

• LLM will generate `{tool: get-weather, query: "SF"}` 

• External tool is called and provides result to LM 

• Example: “If I invest $100 at 7% compound interest for 12 years, what do I 
have at the end?” 

• LLM generates Python code with this: `{tool: python-interpreter, 
code: "100 * (1+0.07)**12"}` 

• Generates code, runs it, and produces the outputRef: https://www.deeplearning.ai/the-batch/how-agents-can-
improve-llm-performance/

LMs can generate function signatures to interact 
with external tools, enabling capabilities such as 
making API calls or executing code. 

Tool usage address the following challenges 

• Real-time information 

• Computations



Interact with environments

Agentic LMs

• Simple LM: use cases involve text in and text out

Text input LM Text output

• Agentic LM: Interact with environments iteratively

LM Environment

Action

Observation

Memory

Reasoning

& Planning

Ref: https://rdi.berkeley.edu/llm-agents-mooc/slides/intro.pdf



Overview

Agentic LMs

A progression of LM usage 

• Ability to Reason and Act: 

• Reason about tasks: break down 
complex tasks and plan actions 

• Execute actions: use external tools, 
code, and retrieve information 

• Interact with environment: using tools 

• Learn from feedback

Ref: https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/

Example task:  

Customer support case: "Can I get a refund 
for product Foo?" 

• Check the refund policy 

• Check the customer order information 

• Check the product information 

• Generate a refund plan and response



Agentic LMs

• Agent workflow: LMs iterate over documents or tasks, using external tools or code to: 

• Research topics using web data, summarize findings, and present output 

• Prepare plans for software fixes and iteratively propose code solutions 

• Utilize LMs with different roles (such as generator and critics) iteratively 

• Generate plans for using external tools 

• Agentic LM usage can achieve more complex tasks than non-iterative and LM-only patterns

Ref: https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/



Real-world Applications

Agentic LMs

• Software Development 

• Code generation and review 

• Bug detection and fixing 

• Research and Analysis 

• Data gathering and synthesis 

• Report generation 

• Task Automation 

• Workflow optimization 

• Process automation

Ref: https://cs230.stanford.edu/syllabus/fall_2024/rag_agents.pdf

AI SW developer

AI lawyer

AI SDR



When to use Agent

• Is the task complex? 

• Is the task valuable? 

• Is it viable? 

• What is the cost of error?

How We Build Effective Agents: Barry Zhang, Anthropic

https://www.youtube.com/watch?v=D7_ipDqhtwk&t=7s


SW Development

• Is the task complex? Yes 

• Is the task valuable? Yes 

• Is it viable? Yes 

• What is the cost of error? With tests, we can detect issues during development

How We Build Effective Agents: Barry Zhang, Anthropic

https://www.youtube.com/watch?v=D7_ipDqhtwk&t=7s


AI Progression in SW development

• Auto completion: suggests the code in editor environment 

• Chat style AI:  

• AI will answer questions and update the code based on 
conversations 

• Agentic AI: 

• Changes requires understanding multiple files and result of 
the execution or search



AI software engineer

• AI SWE understand the code base 

• Code indexing and understanding 

• Use tool to read code (add relevant code into context) 

• AI can plan and use tools 

• Run posix commands 

• Run code and parse the outputs 

• Run git commands 

• Run the test and check the results



AI in SWE

• Rapid development 

• Started with simple ideas but will be applied to more areas in 
development 

• Coding 

• Fixing issues 

• Finding issues 

• Writing tests 

• Refactor code



What’s in it for us?

• Use AI tools to improve productivity 

• Try out simple tasks first, then extend 

• Refactoring or fixing issues is a good start 

• Write tests 

• Use it as a AI buddy for debugging 

• Log or error analysis



Summary

• Agentic LMs represent the next evolution in AI assistance 

• Key advantages: 

• Autonomous reasoning and action 

• Tool integration capabilities 

• Iterative improvement through feedback 

• Complex task decomposition 

• Growing applications across software development, research, and automation 

• AI systems are pushing the boundary of how software is designed, built, tested, and maintained.
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Agentic LM design patterns

Here are some key agent design patterns: 

• Planning: Multi-step planning to achieve goals 

• Reflection: Examines its own work and improves 

• Tool usage: Utilizes web search, code executions 

• Multi-agent collaboration: Splits work and facilitates 
discussion

Ref: https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/



How LMs are trained:

1. Pre-training: LM is trained with large corpus by next token prediction objective 

2. Post-training: 

1. Instruction following training adapts pre-trained LM to follow specific instruction and 
commands. It is also called as SFT (supervised fine-tuning). 

• It makes the models easier to use. 

• It makes the model to respond in a specific style 

2. RLHF (reinforcement learning with human feedback): method that fine-tunes the model 
using human preference to align generated behaviors with human values and intentions

https://openai.com/index/instruction-following/
https://arxiv.org/abs/2203.02155

